CS 8th sem Soft Computing Syllabus CS 801 Soft Computing Syllabus

RGTU/RGPV CS -801 Soft Computing Syllabus
 RGTU/RGPV Soft Computing SYLLABUS
Computer Science and Engineering CS 8th Semester Syllabus,

Unit – I
  Soft Computing : Introduction of soft computing, soft computing vs. hard computing, various types of soft computing techniques, applications of soft computing. Artificial Intelligence : Introduction, Various types of production systems, characteristics of production systems, breadth first search, depth first search techniques, other Search Techniques like hill Climbing, Best first Search, A* algorithm, AO* Algorithms and various types of control strategies. Knowledge representation issues, Prepositional and predicate logic, monotonic and non monotonic reasoning, forward Reasoning, backward reasoning, Weak & Strong Slot & filler structures, NLP.

Unit – II
  Neural Network : Structure and Function of a single neuron: Biological neuron, artificial neuron, definition of ANN, Taxonomy of neural net, Difference between ANN and  human brain, characteristics and applications of ANN, single layer network, Perceptron training algorithm, Linear separability, Widrow & Hebb;s learning rule/Delta rule, ADALINE, MADALINE, AI v/s ANN.
Introduction of MLP, different activation functions, Error back propagation algorithm, derivation of BBPA, momentum, limitation, characteristics and application of EBPA,

Unit – III
  Counter propagation network, architecture, functioning & characteristics of counter Propagation network, Hopfield/ Recurrent network, configuration, stability constraints, associative memory, and characteristics, limitations and applications. Hopfield v/s Boltzman machine. Adaptive Resonance Theory: Architecture, classifications, Implementation and training. Associative Memory.

Unit – IV
  Fuzzy Logic: Fuzzy set theory, Fuzzy set versus crisp set, Crisp relation & fuzzy relations, Fuzzy systems: crisp logic, fuzzy logic, introduction & features of membership functions,  Fuzzy rule base system : fuzzy propositions, formation, decomposition & aggregation of fuzzy rules, fuzzy reasoning, fuzzy inference systems, fuzzy decision making & Applications of fuzzy logic.

Unit – V
  Genetic algorithm : Fundamentals, basic concepts, working principle, encoding, fitness function, reproduction, Genetic modeling: Inheritance operator, cross over, inversion & deletion, mutation operator, Bitwise operator, Generational Cycle, Convergence of GA, Applications & advances in GA, Differences & similarities between GA & other traditional methods.

CS -801 Soft Computing Syllabus References : 
  • S, Rajasekaran & G.A. Vijayalakshmi Pai, Neural Networks, Fuzzy Logic & Genetic Algorithms, Synthesis & applications, PHI Publication.   
  • S.N. Sivanandam & S.N. Deepa, Principles of Soft Computing, Wiley Publications   
  • Rich E and Knight K, Artificial Intelligence, TMH, New Delhi.   
  • Bose, Neural Network fundamental with Graph , Algo.& Appl, TMH   
  • Kosko: Neural Network & Fuzzy System, PHI Publication   
  • Klir & Yuan ,Fuzzy sets & Fuzzy Logic: Theory & Appli.,PHI Pub.   
  • Hagen, Neural Network Design, Cengage Learning

Add to Mixx! Mixx it!
| More

0 comments:

Post a Comment

 

RGTU Syllabus , RGPV Syllabus © Template Design by Herro | Publisher : Templatemu Copy Protected by RgtuSyllabus.blogspot.com in association with | RollingRoxy.Blogspot.Com | ResultsZone.Blogspot.Com | MBANetBook.Blogspot