EX8303 Fuzzy Logic & Neural Network EX 8th (Eighth) sem Electrical & Electronics Engineering(EX) Syllabus

EX8303 Fuzzy Logic & Neural Network  Syllabus
RGTU/RGPV  Fuzzy Logic & Neural Network  Syllabus
Electrical & Electronics Engineering(EX) VIII-8th Semester Syllabus

EX8303 Fuzzy Logic & Neural Network  Course Contents:

Unit-I
Fuzzy system introduction, Fuzzy relation, Membership function, Fuzzy matrices and entropy, Fuzzy
operation and composition.

Unit-II
Fuzzy Variables, Linguistic variables, measures of fuzziness, concepts of defuzzification, Fuzzy control applications.

Unit-III
Fundamentals of Artificial Neural networks- Biological prototype – Artificial neuron, Activation functions, Single layer and multiplayer networks. Training Artificial neural networks, Preceptrons, Exclusive Or Problem – Linear seperability, Storage efficiency, Preceptron learning, perceptron training algorithms. Back propagation, Training algorithm, network configurations, Network paralysis, Local minima, temporal instability.

UNIT-IV
Counter propagation networks, Kohonen layer, Training the kohonen layer, Pre processing the inputted vectors, Initialising the wright vectors, Statistical properties, Training the grosberg layer. Full counter propagation networks, Applications. Statistical methods, Boltzman training, Cauchy training, Artificial specific heat methods, Applications to general non-linear optimization problems. Back propagation and cauchy training.

UNIT-V
Hopfield nets, Recurrent networks, Stability, Associative memory, Thermodynamic systems, Statistical Hopfiled networks, Applications. Bi-directional associative memories, Retrieving on stored association, Encoding the associations.

References :
1. Laurence Fausett “Fundamentals of Neural Networks”, Prentice Hall.
2. Zmmermann H.J. “Fuzzy Set Theory and its Applications”, Allied Publishers Ltd.
3. Klir G.J. and Folger T., “Fuzzy Sets, Uncertainty and Information”, Prentice Hall.
4. Limin Fu. “Neural Networks in Computer Intelligence”, McGraw Hill.
5. Zuroda J.M. “Introduction to Artificial Neural Systems”, Jaico Publishing.
6. Haykin S. “Artificial Neural Network: A Comprehensive Foundation” Asia Pearson Pub.
7. Sivanandam & Deepa- An Introduction to Neural Networks using Matlab 6.0 1st ed., TMH
8. M.Amirthavalli, Fuzzy logic and neural networks, Scitech publications.

Add to Mixx! Mixx it!
| More

0 comments:

Post a Comment

 

RGTU Syllabus , RGPV Syllabus © Template Design by Herro | Publisher : Templatemu Copy Protected by RgtuSyllabus.blogspot.com in association with | RollingRoxy.Blogspot.Com | ResultsZone.Blogspot.Com | MBANetBook.Blogspot